LLMs Unplugged | Cybernetic Studio

Australian
National
University

Weighted Randomness

Learn how to make random choices where some options are more likely than
others —an operation at the core of all generative Al.

You will need

- 10-sided dice (d10)
- coloured marbles or beads in a bag

Your goal

To randomly choose from a fixed set of outcomes according to a given probability
distribution.

Key idea

Sometimes we need to make random choices where some outcomes are more
likely than others. There are ways to do this which ensure certain relationships on
average between the outcomes (e.g. one outcome happening twice as often as
another one).

©® 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

LLMs Unplugged | Cybernetic Studio

Algorithm 1: beads in a bag

- materials: coloured beads, bag

- setup: count out a number of beads corresponding to the desired
weights for each outcome

- sampling procedure: shake the bag, then draw one bead without
looking

Example
You want to choose an ice cream flavour: Vanilla 50% of the time,

[EhocoTate 30%, and Stxawbexzy 20%.

- add 5 white beads to the bag (corresponding to Vanilla))
- add 3 brown beads to the bag (corresponding to [€hocolate)
- add 2 red beads to the bag (corresponding to [EtEawberzy)

Draw a bead from the bag — that’s your ice-cream choice for today.

Algorithm 2: dice with ranges

- materials: d10 (or d6, d20 as alternatives)

- setup: assign number ranges proportional to weights (see table,
right)

- sampling procedure: roll the die, then look up the corresponding
outcome

Example

- for 60% vanilla/40% chocolate, roll a d10: 1-6 means [vanillal, 7-10
means (chocolate

- for 50% vanilla/30% chocolate/20% strawberry, roll a d10: 1-5
means [Vanilla), 6-8 means [chocolate, 9-10 means [Strawberzy

You can use different dice (d6, d10, d20, d120, etc.), it will just change
the number ranges corresponding to each outcome.

©® 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

d10 dice roll — outcome mapping table

2 [o][]]

3 I_J I:I I:I

4 I:I I:I - -

s [017) [2[5] [-13] 5[] o]
1 2 3 4 5 6

108 [0 3 [
1 2 3 4 5 6 7

7 EIEEEEEEE
1 2 3 4 5 6 7 8

8 [o][[2]ls][«][sle[7][=]
1 2 3 4 5 6 7 8 9

o[S e

LLMs Unplugged | Cybernetic Studio

Australian
National
University

Training

Build a bigram language model that tracks which words follow which other words
in text.

You will need

- some text (e.g. a few pages from a kids book, but can be anything)
+ pen, pencil and grid paper

Your goal

To produce a grid that captures the patterns in your input text data. This grid is
your bigram language model. Stretch goal: keep training your model on more
input text.

Key idea

Language models learn by counting patterns in text. “Training” means building/
constructing a model (i.e. filling out the grid) to track which words follow other
words.

©® 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

\\
A
SSERS

DA

é
/

S

LLMs Unplugged | Cybernetic Studio

After the first two words (See [Spot) the model looks like:

Algorithm
1. preprocess your text: - -
- convert everything to lowercase see] |
- treat words, commas and full stops as separate “words” (and Gl
ignore all other punctuation and whitespace)
2. set up your grid:
- take the first word from your text
- write it in both the first row header and first column header of
your grid
3. fillin the grid one word pair at a time:
- find the row for the first word (in your training text) and the
column for the second word . _ After the full text the model looks like:
- add a tally mark in that cell (if the word isn’t in the grid yet, add
a new row and column for it) seel 'spot] Tun [Gump)
- shift along by one word (so the second word becomes your
“first” word) see l
- repeat until you’'ve gone through the entire text
spot|
Example run |
Original text: “See Spot run. See Spot jump. Run, Spot, run. Jump, Spot, [|
jump.”
Preprocessed text: [Seel (Spot) (xun () (See Spot Gump (&) Eunl () Spot :
) lrun/ [Gump| [, [spot/[,] Gump][.]) I

©® 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

LLMs Unplugged | Cybernetic Studio

Australian
National
University

Generation

Use a pre-trained model to generate new text through weighted random
sampling.

You will need

- your completed bigram model (i.e. your filled-out grid) from Grid Training
- d10 (or similar) for weighted sampling
- pen & paper for writing down the generated “output text”

Your goal

To generate new text from your bigram language model. Stretch goal: keep
going, generating as much text as possible. Write a whole book!

Key idea

Language models generate text by predicting one word at a time based on
learned patterns. Your trained model provides the “next word” options and their
relative probabilities; dice rolls provide the randomness to choose one of those
options (and this process can be repeated indefinitely).

©® 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

Algorithm Example

1. choose a starting word — pick any word from the first column of Using the same bigram model from the example in Grid Training:

your grid
2. look at that word’s row to identify all possible next words and see| spot Tun (J Jump) ()
their counts
3. roll dice weighted by the counts (see the Weighted Randomness !
lesson) I
4. write down the chosen word and use that as your next starting
word I |
5. repeat from step 2 until you reach the desired length or a natural
stopping point (e.g. a full stop [2)) N |
Jump) |
() I | |

- choose (for example) as your starting word

. (row) — (column); it's the only option, so write down
as next word

. N (25%), Gump) (25%) or [§) (50%); roll dice to choose

- let’s say dice picks [xun); write it down

. — 1) (67%) or [3) (33%); roll dice to choose

- let’s say dice picks [1J; write it down

S (33%), (33%) or Fump) (33%); roll dice to choose

- let’s say dice picks [seg); write it down

. — [Spot); it's the only option, so write down [spet)... and so on

After the above steps, the generated text is “see spot run. see spot”

LLMs Unplugged | Cybernetic Studio

©® 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

LLMs Unplugged | Cybernetic Studio

Australian
National
University

Trigram

Extend the bigram model to consider two words of context instead of one, leading
to better text generation.

You will need

- same as Grid Training lesson
- additional paper for the three-column model
- pen, paper & dice as per Grid Generation

Your goal

To train a trigram language model (a table this time, not a grid like your bigram
model from Grid Training) and use it to generate text. Stretch goal: train on more
data, or generate more text.

Key idea

More context leads to better predictions. A trigram model considers two previous
words instead of one, demonstrating the trade-off between context length and
data requirements that shapes all language models.

©® 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

LLMs Unplugged | Cybernetic Studio

After the full text (Seel Spot xun (1) See [Spot Gump) [1) the model is:

Algorithm (training)

1. create a four-column table (see example on right) word 1 word 2 word 3 count

2. extract all word triples: for each (overlapping) word 1/word 2/word |
3 “triple” in your text increment the count column for that triple,
or create a new row if it’s a triple you’ve never seen before and set (J |
the count to 1 (note: row order doesn’t matter)
[|
Example (training) () |
After the first four words (See (J)) the model is: Gump) |
word 1 word 2 word 3 count Jump| 8 |
see Tun |
run (] I
Note: the order of the rows doesn’t matter, so you can re-order to group them by word 1 if that helps.
Algorithm (generation) Example (generation)
1. pick any row from your table; write down word 1 and word 2 as 1. from the table above, choose (word 1) and (word 2) as
your starting words your starting words
2. find all rows where word 1 and word 2 are exact matches for your 2. find all rows with word 1= and word 2 = [spot); in this case
two starting words, and make note of their count columns rows 1and 5 (both have count ==1)
3. as per Grid Generation roll a d10 weighted by the counts and 3. roll a d10 and write down the word 3 from the row chosen by the
select the word 3 associated with the chosen row dice roll
4. move along by one word (so word 2 becomes your new word 1and 4. move along by one word (so word 1 is and word 2 is either
word 3 becomes your new word 2) and repeat from step 2 or fump) depending on your dice roll) and repeat from step 2

©® 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

LLMs Unplugged | Cybernetic Studio

Australian
National
University

Training (bucket version)

Build a bigram language model using physical tokens and buckets to track which
words follow which other words.

You will need

- some text (e.g. a few pages from a kids book) printed or handwritten on paper
(big enough that you can cut it into individual words)

- several containers (buckets are great, but could also cups, bowls, envelopes, or
labelled areas on a table)

- scissors, pen and sticky notes or paper for bucket labels

Your goal

To produce a collection of labelled buckets containing tokens from your text.
Stretch goal: keep training your model on more input text.

Key idea

Language models learn by counting patterns in text. “Training” means building a
model that tracks which words follow other words. In this version, the “following”
relationship is captured physically —each bucket contains the tokens that
appeared after its label in the original text.

©® 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

LLMs Unplugged | Cybernetic Studio

Algorithm
1. prepare your tokens:

+ print or write out your training text on paper

- use scissors to cut the text into individual words (called
“tokens”); commas & full stops into separate pieces as well (and
disregard all other punctuation)... but keep them in order

2. build the model one token at a time, starting with the first:

- if this token doesn’t have a bucket yet, create one and label it
with this word

- take the next token from your pile and put it into the current
token’s bucket

- now apply the same process to that next token (create its
bucket if needed)

+ repeat until all tokens are in buckets

Example

Original text: “See Spot run. See Spot jump.”

Prepared tokens: [See) [spot] runl (1) [Seel Spot| Gump) [1)

©® 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

After processing the first two tokens (seel (Spot)):

Bucket Tokens inside

After all tokens have been processed:

Bucket Tokens inside

see
xun/Fump)

run [
() see
Gump/ L]

Notice that the “see” bucket contains two tokens because
“spot” followed “see” twice in the original text. This captures the
same information as a grid with tally marks, but in a physical form
you can touch and manipulate.

LLMs Unplugged | Cybernetic Studio

Australian
National
University

Generation (bucket version)

Use your bucket-based bigram model to generate new text by picking tokens at
random.

You will need

- your completed bucket model from Bucket Training
- pen & paper for writing down the generated “output text”

Your goal

To generate new text from your bucket language model. Stretch goal: keep
going, generating as much text as possible. Write a whole book!

Key idea

Language models generate text by predicting one word at a time based on
learned patterns. Each bucket contains all the tokens that could come next —and
some tokens appear multiple times, making them more likely to be picked.
Choosing randomly from a bucket and repeating word by word creates new text.

©® 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

LLMs Unplugged | Cybernetic Studio

Algorithm

1.

ook N

choose a starting bucket — pick any bucket and write down its
label as the first word

close your eyes and pick a random token from inside that bucket
write down the token you picked

put the token back in the bucket (so you can use it again later)
find the bucket whose label matches the token you just picked
repeat from step 2 until you reach the desired length or a natural
stopping point (e.g. an empty bucket)

©® 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

Example

Using the same bucket model from the example in Bucket Training:

Bucket Tokens inside

zunl Gump

run [
() see
Gump/ [

- choose as your starting bucket; write down “see”

- pick from “see” bucket: both tokens are [Spot), so we get [Spot);
write it down

- pick from “spot” bucket: randomly between and Gump)

- let’s say we pick [gunl; write it down

- pick from “run” bucket: only [} inside; write it down

+ pick from “” bucket: only inside; write it down

- pick from “see” bucket: get [spot); write it down

- pick from “spot” bucket: this time we pick [Jump); write it down

- pick from “jump” bucket: only () inside; write it down

After the above steps, the generated text is “see spot run. see spot
jump.”

The randomness comes from physically picking tokens without
looking. Buckets with more tokens of the same type are more likely
to produce that token.

LLMs Unplugged | Cybernetic Studio

Australian
National
University

Trigram (bucket version)

Extend the bucket bigram model to consider two words of context instead of one,
leading to better text generation.

You will need

- the same materials as Bucket Training

- additional small containers for two-word label buckets

- sticky notes or paper for bucket labels (you'll need to write two words on each
label)

Your goal

To build a trigram language model using buckets where each bucket is labelled
with two words instead of one. Stretch goal: train on more data or generate
longer outputs.

Key idea

Trigrams show how more context improves prediction quality. Instead of asking
“what follows this word?”, we ask “what follows these two words?”. This means
more buckets to manage, but better predictions.

©® 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

LLMs Unplugged | Cybernetic Studio

Algorithm (training) Example (training)

1. prepare your tokens as per Bucket Training (print, cut into tokens, Original text: “See Spot run. See Spot jump.”
keep in order)

Prepared tokens: [see [spot) runl (1) [Seel Spot [Gump) 1)

2. build the model using word pairs as bucket labels:

. After processing all tokens:
- take the first two tokens — these form your bucket label

. crgate the bucket if neede.d, then put the third token in.side it Bucket label Tokens inside
- shift along by one (new pair = old second word + token just
placed) Jump)
+ repeat until all tokens are in buckets
P 0

see
. see
()

The “see spot” bucket has two tokens because different words
followed that pair. Compare to bigram where “see” would just

contain 'spot.
Algorithm (generation) Example (generation)
choose a starting bucket; write down its two-word label Using the bucket model from training:

1.

2. close your eyes and pick a random token from that bucket

3. write down the token, then put it back in the bucket

4. find the bucket whose label matches your last two words (second
word of old label + the token you just picked)

5. if no bucket exists, use any bucket starting with the first word
instead

6. repeat from step 2 until you reach a stopping point

. start with bucket; write “see spot”

. pick randomly: or fump — say we get [xun); write it
. find bucket “spot run”; pick [J; write it

. find bucket “run ”; pick [see); write it

. find bucket “. see”; pick [Spot); write it

find bucket “see spot”; this time pick [Jump); write it
find bucket “spot jump”; pick [J; write it

4O OAWN o

Generated text: “see spot run. see spot jump.”

©® 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

LLMs Unplugged | Cybernetic Studio

Australian
National
University

Pre-trained Model Generation

Use a (slightly larger) pre-trained model to generate new text through weighted
random sampling.

You will need

- a pre-trained model booklet
+ d10 for weighted sampling
- pen & paper for writing down the generated “output text”

Your goal

To generate new text using a pre-trained language model without having to train
it yourself. Stretch goal: without looking at the title, try and guess which text the
booklet model was trained on.

Key idea

You don’t need to train your own model to use one. Pre-trained models capture
patterns from large amounts of text and can be used to generate new text just
like your “hand-trained” model from Grid Training.

©® 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

Algorithm Example 1: single d10

Full instructions are at the front of the pre-trained model booklet, Your current word is “cat” and its entry shows:
but here’s a quick summary:

cat ¢ 4|sat 7|ran 10|slept

1. choose a starting word — pick any bold word from the booklet

and write it down - one diamond (¢) means roll 1d10

2. look up the word’s entry (i.e. use the booklet like a dictionary) to - roll your dice: roll a 6
find all possible next words according to the model « find the next word: first number = 6 is 7|ran, so next word is “ran”

3. roll your d10s (if required): check for diamonds next to the word ~ ~ Writeitdown, look it up and continue the process

— this shows how many d10s to roll (e.g. ¢¢¢ means roll 3 d10s). If
there are no diamonds, there’s only one possible next word —skip Example 2: multiple d10s
to step 5. Read the dice from left to right as a single number (e.g.

rolling 2,1 and 7 means your roll is 217) Your current word is “the” and its entry shows:

4. find your next word: scan through the followers until you find the the ¢4 33|cat 66|d0g 99|end
first number = your roll, or just use the single word if no dice were
rolled (write it down) + two diamonds () means roll 2 d10s
+ roll your dice: roll 5 and 8 — combine them to get 58
- find the next word: first number = 58 is 66|dog, so next word is
“dog”
« write it down, look it up and continue the process

5. repeat from step 2 using this word as your new word, continuing
this loop until you reach a natural stopping point (like a period) or
reach your desired text length

LLMs Unplugged | Cybernetic Studio

©® 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

LLMs Unplugged | Cybernetic Studio

Australian
National
University

Sampling

When generating text the language model gives several different options for
which word could come next in the generated text —which one to choose?

You will need

- acompleted model from an earlier lesson
* pen, paper & dice as per Grid Generation

Your goal

To generate text (with the same model) using at least two different temperature
values and at least two different truncation strategies. Stretch goal: design and
evaluate your own truncation strategy.

Key idea

There are lots of different sampling algorithms — ways to select the next word
during text generation. Each strategy has different strengths and weaknesses,
and can significantly influence the generated text even if the rest of the model is
identical.

©® 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

Temperature control Example

If the counts in a given row are:
The temperature parameter (a number) controls the randomness by &

adjusting the relative likelihood of probable vs improbable words. =R ump) 0
The higher the temperature, the more uniform the distribution
becomes, increasing randomness and allowing more sampling from see 4 2 1 1

unlikely words.
1. if temperature = 1: use counts as-is (4,2, 1, 1)
Algorithm . is 2x as likely as [Eunl, 4x as likely as [fump) or (1)
2. if temperature = 2: divide counts by 2 — (2, 1,1, 1)
. still most likely, but only 2x as likely as others
3. if temperature = 4: divide counts by 4 — (1,1,1, 1)
- all words equally likely

1. when sampling the next word, divide all counts by temperature
value (round down, min 1)

Truncation strategies Non-sequitur sampling

1. find current word’s row

. pick the column with the lowest (non-zero) count

if there’s a tie, roll dice to choose equally among the least likely
options

Truncation narrows the viable “next word options” by ruling out some
options. Any truncation strategy can be combined with temperature
control.

W N

Greedy sampling No-repeat sampling

1. find current word’s row

2. select the word with the highest count

3. if there’s a tig, roll dice to choose equally among the most likely
options

track all words used in current sentence

roll dice to select next word as normal

if word already used, re-roll

if no valid options remain, insert i) and continue

Sl SO AV

Haiku sampling Alliteration sampling

track syllables in current line (5-7-5 pattern)

roll dice to select next word as normal

if selected word exceeds line’s syllable limit, re-roll
start new line when syllable count reached

1. note first letter/sound of previous word

2. if any next-word options start with same letter/sound, sample only
from those alliterative options

3. otherwise use standard sampling

LLMs Unplugged | Cybernetic Studio

WD~

©® 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

LLMs Unplugged | Cybernetic Studio

Australian
National
University

Context Columns

Enhance the bigram model with context columns that capture grammatical and
semantic patterns.

You will need

-+ your completed bigram model from Grid Training
- pen, paper & dice as per Grid Generation

Your goal

To add new “context” columns to an existing bigram model and generate text
from your newly context-aware model. Stretch goal: add and evaluate your own
new context columns.

Key idea

The concept of attention — selectively focusing on relevant context —is a key
innovation in Large Language Models. Adding context columns to your model
gives it more information about which previous words matter most for prediction,
leading to better generated text (with the trade-off being a slightly larger grid
and more complex algorithm).

©® 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

LLMs Unplugged | Cybernetic Studio

Algorithm (training) Example (training)

1. add context columns to your existing bigram model: For text “I run fast. You run to me.” the model
after verb, after pronoun and after preposition with context columns is:

2. proceed as per Grid Training, but each time after
updating the cell count for a word pair:

after verb
after pronoun
after preposition

- 8

you| [run

- if the first word is a verb, increment the value in the

second word'’s after verb column
- if the first word is a pronoun (l/you/they etc.),
increment the value in the second word’s after
pronoun column
- if the first word is a preposition (in/fon/at/with/to etc.),
increment the value in the second word’s after fast
preposition column
This is a little tricky to get the hang of, but the key point is
that you're updating two different rows each time —once
for the “word follows word” cell, and once for the “context
column” cell. L)

Algorithm (generation)

1. choose a starting word

2. check its row to identify the “normal” transition counts, but also
check if the starting word is a verb/pronoun/preposition and if so
add the values from the relevant “context” column before using a
d10 to choose the next word

3. repeat from step 2 until you reach the desired length or a natural
stopping point (e.g. a full stop (1))

If you like, you can add your own context columns (based on patterns
which you think are important).

©® 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

Example (generation)
Starting word: (a verb):

1.
2.

3.

4.

check row: potential next words are (1) or [Eg) (1)

check all context columns: for [t the after verb column has a
count of 1 (appears after verbs)

combine both counts: roll a dice to choose either [fast] (1) or
1+1=2)

repeat from step 1 until you reach the desired length or a natural
stopping point (e.g. a full stop 1))

LLMs Unplugged | Cybernetic Studio

Australian
National
University

Word Embeddings

Transform words into numerical vectors that capture meaning, revealing the
semantic relationships between words in your model.

You will need

- your completed bigram model grid (including context columns if you have
them)

- another empty grid (same size as your bigram model)

* pen, paper & dice as per Grid Generation

Your goal

To create a similarity matrix (another square grid) which captures how similar (or
different) all the words in your bigram model are. Stretch goal: create a visual
representation of this similarity matrix.

Key idea

Each word’s row in your model is its embedding under that model —a numerical
fingerprint that captures meaning through context. Distances between words
reveal grammatical and semantic relationships. Similar words have similar
embeddings.

©® 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

LLMs Unplugged | Cybernetic Studio

The embedding distance between the first two rows ([seel and [Spot))
Algorithm is the sum of the absolute differences between corresponding

For this algorithm you'll need two grids: your original bigram model elements (0 for blank cells):

grid and a new embedding distance grid (with the same words as d(see,spot) =[0—0]+ |1 —0]+]0—1|+ |0 —1]
row/column headers, but otherwise blank to start with). —0+14+1+1

1. for the first row and second row in the bigram model, add up the =3

total of the absolute differences between corresponding cellsin pyt this distance in the embedding distance grid (note diagonals are
the two rows and write it in the empty cell for that word pair in the already pre-filled with 0 as well):
embedding distance grid

2. fill out the embedding distance grid by repeating step 1 for all see ()

different pairs of rows in the bigram model grid

see 0 3
Example 0
Original text: “See Spot. Spot runs.” (J 0]
Completed bigram model grid: 0
cEE) Complete embedding distance grid (no need to fill out the bottom
e | triangle — the embedding distance is symmetric):
see [
0 see 0 3 0 2
pot
spot 0 3 2
() 0 2
0

The distances show that and () have identical embeddings
(distance = 0), while and are quite different (distance = 3).

©® 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

LLMs Unplugged | Cybernetic Studio

Australian
National
University

LoRA

Efficiently adapt a trained language model to a new domain or style without
retraining the entire model from scratch.

You will need

- acompleted bigram model from an earlier lesson
+ pen, pencil and grid paper
+ some new text in a different style or domain

Your goal

To create a lightweight “adaptation layer” that modifies your existing model’s
behaviour for a new domain. Stretch goal: combine the base model and LoRA
layer with different mixing ratios.

Key idea

Low-Rank Adaptation (LoRA) allows you to specialise a language model by
adding small adjustments rather than retraining everything. The LoRA layer is

typically much smaller than the base model because you only track the changes

from the base model, not the full weights.

©® 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

LoRA layer trained on “l saw a red cat. | saw the red dog.” (smaller —
Algorithm only 1row):

1. choose an existing bigram model as the “base model”

saw a

2. train a LoRA layer:
saw 1 1 2

- start with a new grid (same columns as the base model)
+ process your new domain-specific text using the same

i i e } Combined model (add counts):
algorithm as Grid Training, but only include rows for words that

appear in your new text 8
3. apply the adaptation: 5 - - 5
- as per Grid Generation, but add the counts from both grids (if
current word is in the LoRA grid) 1 2 1
- optionally scale the LoRA values up or down to control
adaptation strength 3
1
Example
P al 2
Base model trained on general text:
1
al
. row:
2 4 P 1
» [-,2,—,4,2,1] (base)
1 2 1 » [-,—,—,1,1,2] (LoRA)
»[-,2,—,5,3,3] (base + LoRA)
3 . now equally likely as after

- other rows: base + zero = unchanged
+ LoRA is smaller: only 1 row vs 6 in base model

—+
0
(0]
—_

H
H (@)
a
—

LLMs Unplugged | Cybernetic Studio

©® 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

LLMs Unplugged | Cybernetic Studio

Australian
National
University

Synthetic Data

Use your language model to generate new training data, then train a new model
on that synthetic data to see how patterns degrade or change.

You will need

- acompleted model from an earlier lesson
+ pen, paper & dice for text generation
- grid paper for a new model

Your goal

To generate synthetic text using your model, then train a new “generation 2”
model on that synthetic output. Compare the two models to observe what
patterns are preserved or lost. Stretch goal: train a generation 3 model on
generation 2 output. Or go “full Joker”.

Key idea

Models trained on synthetic data (output from other models) can drift from the
original patterns. This demonstrates model collapse and the importance of real
training data.

©® 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

LLMs Unplugged | Cybernetic Studio

Algorithm

1. generate synthetic text:

- use your existing model to generate text (as in Grid Generation)

- generate enough text for meaningful training (at least 50-100
words)

- this is your synthetic training corpus

Example

Original training text: “See Spot run. See Spot jump.”

Generation 1 model’s synthetic output: “See run. Run spot. Spot run

”

run.

Notice how the synthetic text:
- uses all the same words as the original

2. train generation 2 model: - has different patterns (more [£unl runl, no (Spot! Gump))
- create a new grid following the Grid Training algorithm * might lose some variety from the original
- use your synthetic text as the input corpus Generation 2 model trained on the synthetic output will amplify
- this new model learns from Al-generated text, not human- these changes:
written text . becomes more common
3. compare the models:) @ disappears entirely
+ new unlikely patterns may emerge
- look for words that appear in the original but not in generation 2
- compare the counts for cells that appear in both
- generate text from both models and compare the outputs
Joker mode Example

Instead of generating synthetic text from an existing model, create a

completely random model:

ok owN -~

draw a grid with any words you choose in the rows and columns
add tally marks in any cells you want, with any frequencies

this creates a model with no connection to real text patterns
generate text from this random grid using dice as normal

train a generation 2 model on the output from your random grid

©® 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

A completely random Joker grid might look like this:

3 1 2
1 4 1
2 1 3
2 1 2

