
Weighted Randomness

Learn how to make random choices where some options are more likely than

others—an operation at the core of all generative AI.

You will need

• 10-sided dice (d10)

• coloured marbles or beads in a bag

Your goal

To randomly choose from a fixed set of outcomes according to a given probability

distribution.

Key idea

Sometimes we need to make random choices where some outcomes are more

likely than others. There are ways to do this which ensure certain relationships on

average between the outcomes (e.g. one outcome happening twice as often as

another one).

© 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

L
L
M
s

U
n
p
l
u
g
g
e
d

|

C
y
b
e
r
n
e
t
i
c

S
t
u
d
i
o

Algorithm 1: beads in a bag

• materials: coloured beads, bag

• setup: count out a number of beads corresponding to the desired

weights for each outcome

• sampling procedure: shake the bag, then draw one bead without

looking

Example

You want to choose an ice cream flavour: vanilla 50% of the time,

chocolate 30%, and strawberry 20%.

• add 5 white beads to the bag (corresponding to vanilla)

• add 3 brown beads to the bag (corresponding to chocolate)

• add 2 red beads to the bag (corresponding to strawberry)

Draw a bead from the bag—that’s your ice-cream choice for today.

Algorithm 2: dice with ranges

• materials: d10 (or d6, d20 as alternatives)

• setup: assign number ranges proportional to weights (see table,

right)

• sampling procedure: roll the die, then look up the corresponding

outcome

Example

• for 60% vanilla/40% chocolate, roll a d10: 1-6 means vanilla , 7-10

means chocolate

• for 50% vanilla/30% chocolate/20% strawberry, roll a d10: 1-5

means vanilla , 6-8 means chocolate , 9-10 means strawberry

You can use different dice (d6, d10, d20, d120, etc.), it will just change

the number ranges corresponding to each outcome.

d10 dice roll → outcome mapping table

2

1 2

0 4 5 9

3

1 2 3

0 3 4 6 7 9

4

1 2 3 4

0 2 3 5 6 7 8 9

5

1 2 3 4 5

0 1 2 3 4 5 6 7 8 9

6

1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9

7

1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9

8

1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9

9

1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9

© 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

L
L
M
s

U
n
p
l
u
g
g
e
d

|

C
y
b
e
r
n
e
t
i
c

S
t
u
d
i
o

Training

Build a bigram language model that tracks which words follow which other words

in text.

You will need

• some text (e.g. a few pages from a kids book, but can be anything)

• pen, pencil and grid paper

Your goal

To produce a grid that captures the patterns in your input text data. This grid is

your bigram language model. Stretch goal: keep training your model on more

input text.

Key idea

Language models learn by counting patterns in text. “Training” means building/

constructing a model (i.e. filling out the grid) to track which words follow other

words.

© 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

L
L
M
s

U
n
p
l
u
g
g
e
d

|

C
y
b
e
r
n
e
t
i
c

S
t
u
d
i
o

Algorithm

1. preprocess your text:

• convert everything to lowercase

• treat words, commas and full stops as separate “words” (and

ignore all other punctuation and whitespace)

2. set up your grid:

• take the first word from your text

• write it in both the first row header and first column header of

your grid

3. fill in the grid one word pair at a time:

• find the row for the first word (in your training text) and the

column for the second word

• add a tally mark in that cell (if the word isn’t in the grid yet, add

a new row and column for it)

• shift along by one word (so the second word becomes your

“first” word)

• repeat until you’ve gone through the entire text

Example

Original text: “See Spot run. See Spot jump. Run, Spot, run. Jump, Spot,

jump.”

Preprocessed text: see spot run . see spot jump . run , spot

, run . jump , spot , jump .

After the first two words (see spot) the model looks like:

see spot

see |

spot

After the full text the model looks like:

see spot run . jump ,

see ||

spot | | ||

run || |

. | | |

jump || |

, || | |

© 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

L
L
M
s

U
n
p
l
u
g
g
e
d

|

C
y
b
e
r
n
e
t
i
c

S
t
u
d
i
o

Generation

Use a pre-trained model to generate new text through weighted random

sampling.

You will need

• your completed bigram model (i.e. your filled-out grid) from Grid Training

• d10 (or similar) for weighted sampling

• pen & paper for writing down the generated “output text”

Your goal

To generate new text from your bigram language model. Stretch goal: keep

going, generating as much text as possible. Write a whole book!

Key idea

Language models generate text by predicting one word at a time based on

learned patterns. Your trained model provides the “next word” options and their

relative probabilities; dice rolls provide the randomness to choose one of those

options (and this process can be repeated indefinitely).

© 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

L
L
M
s

U
n
p
l
u
g
g
e
d

|

C
y
b
e
r
n
e
t
i
c

S
t
u
d
i
o

Algorithm

1. choose a starting word—pick any word from the first column of

your grid

2. look at that word’s row to identify all possible next words and

their counts

3. roll dice weighted by the counts (see the Weighted Randomness

lesson)

4. write down the chosen word and use that as your next starting

word

5. repeat from step 2 until you reach the desired length or a natural

stopping point (e.g. a full stop .)

Example

Using the same bigram model from the example in Grid Training:

see spot run . jump ,

see ||

spot | | ||

run || |

. | | |

jump || |

, || | |

• choose (for example) see as your starting word

• see (row) → spot (column); it’s the only option, so write down

spot as next word

• spot → run (25%), jump (25%) or , (50%); roll dice to choose

• let’s say dice picks run ; write it down

• run → . (67%) or , (33%); roll dice to choose

• let’s say dice picks . ; write it down

• . → see (33%), run (33%) or jump (33%); roll dice to choose

• let’s say dice picks see ; write it down

• see → spot ; it’s the only option, so write down spot… and so on

After the above steps, the generated text is “see spot run. see spot”

© 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

L
L
M
s

U
n
p
l
u
g
g
e
d

|

C
y
b
e
r
n
e
t
i
c

S
t
u
d
i
o

Trigram

Extend the bigram model to consider two words of context instead of one, leading

to better text generation.

You will need

• same as Grid Training lesson

• additional paper for the three-column model

• pen, paper & dice as per Grid Generation

Your goal

To train a trigram language model (a table this time, not a grid like your bigram

model from Grid Training) and use it to generate text. Stretch goal: train on more

data, or generate more text.

Key idea

More context leads to better predictions. A trigram model considers two previous

words instead of one, demonstrating the trade-off between context length and

data requirements that shapes all language models.

© 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

L
L
M
s

U
n
p
l
u
g
g
e
d

|

C
y
b
e
r
n
e
t
i
c

S
t
u
d
i
o

Algorithm (training)

1. create a four-column table (see example on right)

2. extract all word triples: for each (overlapping) word 1/word 2/word

3 “triple” in your text increment the count column for that triple,

or create a new row if it’s a triple you’ve never seen before and set

the count to 1 (note: row order doesn’t matter)

Example (training)

After the first four words (see spot run .) the model is:

word 1 word 2 word 3 count

see spot run |

spot run . |

After the full text (see spot run . see spot jump .) the model is:

word 1 word 2 word 3 count

see spot run |

spot run . |

run . see |

. see spot |

see spot jump |

spot jump . |

Note: the order of the rows doesn’t matter, so you can re-order to group them by word 1 if that helps.

Algorithm (generation)

1. pick any row from your table; write down word 1 and word 2 as

your starting words

2. find all rows where word 1 and word 2 are exact matches for your

two starting words, and make note of their count columns

3. as per Grid Generation roll a d10 weighted by the counts and

select the word 3 associated with the chosen row

4. move along by one word (so word 2 becomes your new word 1 and

word 3 becomes your new word 2) and repeat from step 2

Example (generation)

1. from the table above, choose see (word 1) and spot (word 2) as

your starting words

2. find all rows with word 1 = see and word 2 = spot ; in this case

rows 1 and 5 (both have count == 1)

3. roll a d10 and write down the word 3 from the row chosen by the

dice roll

4. move along by one word (so word 1 is spot and word 2 is either

run or jump depending on your dice roll) and repeat from step 2

© 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

L
L
M
s

U
n
p
l
u
g
g
e
d

|

C
y
b
e
r
n
e
t
i
c

S
t
u
d
i
o

Training (bucket version)

Build a bigram language model using physical tokens and buckets to track which

words follow which other words.

You will need

• some text (e.g. a few pages from a kids book) printed or handwritten on paper

(big enough that you can cut it into individual words)

• several containers (buckets are great, but could also cups, bowls, envelopes, or

labelled areas on a table)

• scissors, pen and sticky notes or paper for bucket labels

Your goal

To produce a collection of labelled buckets containing tokens from your text.

Stretch goal: keep training your model on more input text.

Key idea

Language models learn by counting patterns in text. “Training” means building a

model that tracks which words follow other words. In this version, the “following”

relationship is captured physically—each bucket contains the tokens that

appeared after its label in the original text.

© 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

L
L
M
s

U
n
p
l
u
g
g
e
d

|

C
y
b
e
r
n
e
t
i
c

S
t
u
d
i
o

Algorithm

1. prepare your tokens:

• print or write out your training text on paper

• use scissors to cut the text into individual words (called

“tokens”); commas & full stops into separate pieces as well (and

disregard all other punctuation)… but keep them in order

2. build the model one token at a time, starting with the first:

• if this token doesn’t have a bucket yet, create one and label it

with this word

• take the next token from your pile and put it into the current

token’s bucket

• now apply the same process to that next token (create its

bucket if needed)

• repeat until all tokens are in buckets

Example

Original text: “See Spot run. See Spot jump.”

Prepared tokens: see spot run . see spot jump .

After processing the first two tokens (see spot):

Bucket Tokens inside

see spot

After all tokens have been processed:

Bucket Tokens inside

see spot spot

spot run jump

run .

. see

jump .

Notice that the “see” bucket contains two spot tokens because

“spot” followed “see” twice in the original text. This captures the

same information as a grid with tally marks, but in a physical form

you can touch and manipulate.

© 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

L
L
M
s

U
n
p
l
u
g
g
e
d

|

C
y
b
e
r
n
e
t
i
c

S
t
u
d
i
o

Generation (bucket version)

Use your bucket-based bigram model to generate new text by picking tokens at

random.

You will need

• your completed bucket model from Bucket Training

• pen & paper for writing down the generated “output text”

Your goal

To generate new text from your bucket language model. Stretch goal: keep

going, generating as much text as possible. Write a whole book!

Key idea

Language models generate text by predicting one word at a time based on

learned patterns. Each bucket contains all the tokens that could come next—and

some tokens appear multiple times, making them more likely to be picked.

Choosing randomly from a bucket and repeating word by word creates new text.

© 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

L
L
M
s

U
n
p
l
u
g
g
e
d

|

C
y
b
e
r
n
e
t
i
c

S
t
u
d
i
o

Algorithm

1. choose a starting bucket—pick any bucket and write down its

label as the first word

2. close your eyes and pick a random token from inside that bucket

3. write down the token you picked

4. put the token back in the bucket (so you can use it again later)

5. find the bucket whose label matches the token you just picked

6. repeat from step 2 until you reach the desired length or a natural

stopping point (e.g. an empty bucket)

Example

Using the same bucket model from the example in Bucket Training:

Bucket Tokens inside

see spot spot

spot run jump

run .

. see

jump .

• choose see as your starting bucket; write down “see”

• pick from “see” bucket: both tokens are spot , so we get spot ;

write it down

• pick from “spot” bucket: randomly between run and jump

• let’s say we pick run ; write it down

• pick from “run” bucket: only . inside; write it down

• pick from “.” bucket: only see inside; write it down

• pick from “see” bucket: get spot ; write it down

• pick from “spot” bucket: this time we pick jump ; write it down

• pick from “jump” bucket: only . inside; write it down

After the above steps, the generated text is “see spot run. see spot

jump.”

The randomness comes from physically picking tokens without

looking. Buckets with more tokens of the same type are more likely

to produce that token.

© 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

L
L
M
s

U
n
p
l
u
g
g
e
d

|

C
y
b
e
r
n
e
t
i
c

S
t
u
d
i
o

Trigram (bucket version)

Extend the bucket bigram model to consider two words of context instead of one,

leading to better text generation.

You will need

• the same materials as Bucket Training

• additional small containers for two-word label buckets

• sticky notes or paper for bucket labels (you’ll need to write two words on each

label)

Your goal

To build a trigram language model using buckets where each bucket is labelled

with two words instead of one. Stretch goal: train on more data or generate

longer outputs.

Key idea

Trigrams show how more context improves prediction quality. Instead of asking

“what follows this word?”, we ask “what follows these two words?”. This means

more buckets to manage, but better predictions.

© 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

L
L
M
s

U
n
p
l
u
g
g
e
d

|

C
y
b
e
r
n
e
t
i
c

S
t
u
d
i
o

Algorithm (training)

1. prepare your tokens as per Bucket Training (print, cut into tokens,

keep in order)

2. build the model using word pairs as bucket labels:

• take the first two tokens—these form your bucket label

• create the bucket if needed, then put the third token inside it

• shift along by one (new pair = old second word + token just

placed)

• repeat until all tokens are in buckets

Example (training)

Original text: “See Spot run. See Spot jump.”

Prepared tokens: see spot run . see spot jump .

After processing all tokens:

Bucket label Tokens inside

see spot run jump

spot run .

run . see

. see spot

spot jump .

The “see spot” bucket has two tokens because different words

followed that pair. Compare to bigram where “see” would just

contain spot spot .

Algorithm (generation)

1. choose a starting bucket; write down its two-word label

2. close your eyes and pick a random token from that bucket

3. write down the token, then put it back in the bucket

4. find the bucket whose label matches your last two words (second

word of old label + the token you just picked)

5. if no bucket exists, use any bucket starting with the first word

instead

6. repeat from step 2 until you reach a stopping point

Example (generation)

Using the bucket model from training:

1. start with see spot bucket; write “see spot”

2. pick randomly: run or jump—say we get run ; write it

3. find bucket “spot run”; pick . ; write it

4. find bucket “run .”; pick see ; write it

5. find bucket “. see”; pick spot ; write it

6. find bucket “see spot”; this time pick jump ; write it

7. find bucket “spot jump”; pick . ; write it

Generated text: “see spot run. see spot jump.”

© 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

L
L
M
s

U
n
p
l
u
g
g
e
d

|

C
y
b
e
r
n
e
t
i
c

S
t
u
d
i
o

Pre-trained Model Generation

Use a (slightly larger) pre-trained model to generate new text through weighted

random sampling.

You will need

• a pre-trained model booklet

• d10 for weighted sampling

• pen & paper for writing down the generated “output text”

Your goal

To generate new text using a pre-trained language model without having to train

it yourself. Stretch goal: without looking at the title, try and guess which text the

booklet model was trained on.

Key idea

You don’t need to train your own model to use one. Pre-trained models capture

patterns from large amounts of text and can be used to generate new text just

like your “hand-trained” model from Grid Training.

© 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

L
L
M
s

U
n
p
l
u
g
g
e
d

|

C
y
b
e
r
n
e
t
i
c

S
t
u
d
i
o

Algorithm

Full instructions are at the front of the pre-trained model booklet,

but here’s a quick summary:

1. choose a starting word—pick any bold word from the booklet

and write it down

2. look up the word’s entry (i.e. use the booklet like a dictionary) to

find all possible next words according to the model

3. roll your d10s (if required): check for diamonds next to the word

—this shows how many d10s to roll (e.g. ♦♦♦ means roll 3 d10s). If

there are no diamonds, there’s only one possible next word—skip

to step 5. Read the dice from left to right as a single number (e.g.

rolling 2, 1 and 7 means your roll is 217)

4. find your next word: scan through the followers until you find the

first number ≥ your roll, or just use the single word if no dice were

rolled (write it down)

5. repeat from step 2 using this word as your new word, continuing

this loop until you reach a natural stopping point (like a period) or

reach your desired text length

Example 1: single d10

Your current word is “cat” and its entry shows:

cat ♦ 4|sat 7|ran 10|slept

• one diamond (♦) means roll 1 d10

• roll your dice: roll a 6

• find the next word: first number ≥ 6 is 7|ran, so next word is “ran”

• write it down, look it up and continue the process

Example 2: multiple d10s

Your current word is “the” and its entry shows:

the ♦♦ 33|cat 66|dog 99|end

• two diamonds (♦♦) means roll 2 d10s

• roll your dice: roll 5 and 8 → combine them to get 58

• find the next word: first number ≥ 58 is 66|dog, so next word is

“dog”

• write it down, look it up and continue the process

© 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

L
L
M
s

U
n
p
l
u
g
g
e
d

|

C
y
b
e
r
n
e
t
i
c

S
t
u
d
i
o

Sampling

When generating text the language model gives several different options for

which word could come next in the generated text—which one to choose?

You will need

• a completed model from an earlier lesson

• pen, paper & dice as per Grid Generation

Your goal

To generate text (with the same model) using at least two different temperature

values and at least two different truncation strategies. Stretch goal: design and

evaluate your own truncation strategy.

Key idea

There are lots of different sampling algorithms—ways to select the next word

during text generation. Each strategy has different strengths and weaknesses,

and can significantly influence the generated text even if the rest of the model is

identical.

© 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

L
L
M
s

U
n
p
l
u
g
g
e
d

|

C
y
b
e
r
n
e
t
i
c

S
t
u
d
i
o

Temperature control

The temperature parameter (a number) controls the randomness by

adjusting the relative likelihood of probable vs improbable words.

The higher the temperature, the more uniform the distribution

becomes, increasing randomness and allowing more sampling from

unlikely words.

Algorithm

1. when sampling the next word, divide all counts by temperature

value (round down, min 1)

Example

If the counts in a given row are:

spot run jump .

see 4 2 1 1

1. if temperature = 1: use counts as-is (4, 2, 1, 1)

• spot is 2x as likely as run , 4x as likely as jump or .

2. if temperature = 2: divide counts by 2 → (2, 1, 1, 1)

• spot still most likely, but only 2x as likely as others

3. if temperature = 4: divide counts by 4 → (1, 1, 1, 1)

• all words equally likely

Truncation strategies

Truncation narrows the viable “next word options” by ruling out some

options. Any truncation strategy can be combined with temperature

control.

Greedy sampling

1. find current word’s row

2. select the word with the highest count

3. if there’s a tie, roll dice to choose equally among the most likely

options

Haiku sampling

1. track syllables in current line (5-7-5 pattern)

2. roll dice to select next word as normal

3. if selected word exceeds line’s syllable limit, re-roll

4. start new line when syllable count reached

Non-sequitur sampling

1. find current word’s row

2. pick the column with the lowest (non-zero) count

3. if there’s a tie, roll dice to choose equally among the least likely

options

No-repeat sampling

1. track all words used in current sentence

2. roll dice to select next word as normal

3. if word already used, re-roll

4. if no valid options remain, insert . and continue

Alliteration sampling

1. note first letter/sound of previous word

2. if any next-word options start with same letter/sound, sample only

from those alliterative options

3. otherwise use standard sampling

© 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

L
L
M
s

U
n
p
l
u
g
g
e
d

|

C
y
b
e
r
n
e
t
i
c

S
t
u
d
i
o

Context Columns

Enhance the bigram model with context columns that capture grammatical and

semantic patterns.

You will need

• your completed bigram model from Grid Training

• pen, paper & dice as per Grid Generation

Your goal

To add new “context” columns to an existing bigram model and generate text

from your newly context-aware model. Stretch goal: add and evaluate your own

new context columns.

Key idea

The concept of attention—selectively focusing on relevant context—is a key

innovation in Large Language Models. Adding context columns to your model

gives it more information about which previous words matter most for prediction,

leading to better generated text (with the trade-off being a slightly larger grid

and more complex algorithm).

© 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

L
L
M
s

U
n
p
l
u
g
g
e
d

|

C
y
b
e
r
n
e
t
i
c

S
t
u
d
i
o

Algorithm (training)

1. add context columns to your existing bigram model:

after verb, after pronoun and after preposition

2. proceed as per Grid Training, but each time after

updating the cell count for a word pair:

• if the first word is a verb, increment the value in the

second word’s after verb column

• if the first word is a pronoun (I/you/they etc.),

increment the value in the second word’s after

pronoun column

• if the first word is a preposition (in/on/at/with/to etc.),

increment the value in the second word’s after

preposition column

This is a little tricky to get the hang of, but the key point is

that you’re updating two different rows each time—once

for the “word follows word” cell, and once for the “context

column” cell.

Example (training)

For text “I run fast. You run to me.” the model

with context columns is:

i
you run fast

to me .

a
ft

e
r

ve
rb

a
ft

e
r

p
ro

n
o

u
n

a
ft

e
r

p
re

p
o

s
it

io
n

i |

you |

run | | ||

fast |

to | |

me | |

. |

Algorithm (generation)

1. choose a starting word

2. check its row to identify the “normal” transition counts, but also

check if the starting word is a verb/pronoun/preposition and if so

add the values from the relevant “context” column before using a

d10 to choose the next word

3. repeat from step 2 until you reach the desired length or a natural

stopping point (e.g. a full stop .)

If you like, you can add your own context columns (based on patterns

which you think are important).

Example (generation)

Starting word: run (a verb):

1. check run row: potential next words are fast (1) or to (1)

2. check all context columns: for to the after verb column has a

count of 1 (appears after verbs)

3. combine both counts: roll a dice to choose either fast (1) or to

(1 + 1 = 2)

4. repeat from step 1 until you reach the desired length or a natural

stopping point (e.g. a full stop .)

© 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

L
L
M
s

U
n
p
l
u
g
g
e
d

|

C
y
b
e
r
n
e
t
i
c

S
t
u
d
i
o

Word Embeddings

Transform words into numerical vectors that capture meaning, revealing the

semantic relationships between words in your model.

You will need

• your completed bigram model grid (including context columns if you have

them)

• another empty grid (same size as your bigram model)

• pen, paper & dice as per Grid Generation

Your goal

To create a similarity matrix (another square grid) which captures how similar (or

different) all the words in your bigram model are. Stretch goal: create a visual

representation of this similarity matrix.

Key idea

Each word’s row in your model is its embedding under that model—a numerical

fingerprint that captures meaning through context. Distances between words

reveal grammatical and semantic relationships. Similar words have similar

embeddings.

© 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

L
L
M
s

U
n
p
l
u
g
g
e
d

|

C
y
b
e
r
n
e
t
i
c

S
t
u
d
i
o

Algorithm

For this algorithm you’ll need two grids: your original bigram model

grid and a new embedding distance grid (with the same words as

row/column headers, but otherwise blank to start with).

1. for the first row and second row in the bigram model, add up the

total of the absolute differences between corresponding cells in

the two rows and write it in the empty cell for that word pair in the

embedding distance grid

2. fill out the embedding distance grid by repeating step 1 for all

different pairs of rows in the bigram model grid

Example

Original text: “See Spot. Spot runs.”

Completed bigram model grid:

see spot . runs

see |

spot | |

. |

runs |

The embedding distance between the first two rows (see and spot)

is the sum of the absolute differences between corresponding

elements (0 for blank cells):

𝑑(see, spot) = |0 − 0| + |1 − 0| + |0 − 1| + |0 − 1|

= 0 + 1 + 1 + 1

= 3

Put this distance in the embedding distance grid (note diagonals are

already pre-filled with 0 as well):

see spot . runs

see 0 3

spot 0

. 0

runs 0

Complete embedding distance grid (no need to fill out the bottom

triangle—the embedding distance is symmetric):

see spot . runs

see 0 3 0 2

spot 0 3 2

. 0 2

runs 0

The distances show that see and . have identical embeddings

(distance = 0), while see and spot are quite different (distance = 3).

© 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

L
L
M
s

U
n
p
l
u
g
g
e
d

|

C
y
b
e
r
n
e
t
i
c

S
t
u
d
i
o

LoRA

Efficiently adapt a trained language model to a new domain or style without

retraining the entire model from scratch.

You will need

• a completed bigram model from an earlier lesson

• pen, pencil and grid paper

• some new text in a different style or domain

Your goal

To create a lightweight “adaptation layer” that modifies your existing model’s

behaviour for a new domain. Stretch goal: combine the base model and LoRA

layer with different mixing ratios.

Key idea

Low-Rank Adaptation (LoRA) allows you to specialise a language model by

adding small adjustments rather than retraining everything. The LoRA layer is

typically much smaller than the base model because you only track the changes

from the base model, not the full weights.

© 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

L
L
M
s

U
n
p
l
u
g
g
e
d

|

C
y
b
e
r
n
e
t
i
c

S
t
u
d
i
o

Algorithm

1. choose an existing bigram model as the “base model”

2. train a LoRA layer:

• start with a new grid (same columns as the base model)

• process your new domain-specific text using the same

algorithm as Grid Training, but only include rows for words that

appear in your new text

3. apply the adaptation:

• as per Grid Generation, but add the counts from both grids (if

current word is in the LoRA grid)

• optionally scale the LoRA values up or down to control

adaptation strength

Example

Base model trained on general text:

saw they we the a red

saw 2 4 2 1

they 1 2 1

we 3

the 1

a 2

red 1

LoRA layer trained on “I saw a red cat. I saw the red dog.” (smaller—

only 1 row):

saw they we the a red

saw 1 1 2

Combined model (add counts):

saw they we the a red

saw 2 5 3 3

they 1 2 1

we 3

the 1

a 2

red 1

• saw row:

‣ [—,2,—,4,2,1] (base)

‣ [—,—,—,1,1,2] (LoRA)

‣ [—,2,—,5,3,3] (base + LoRA)

• red now equally likely as the after saw

• other rows: base + zero = unchanged

• LoRA is smaller: only 1 row vs 6 in base model

© 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

L
L
M
s

U
n
p
l
u
g
g
e
d

|

C
y
b
e
r
n
e
t
i
c

S
t
u
d
i
o

Synthetic Data

Use your language model to generate new training data, then train a new model

on that synthetic data to see how patterns degrade or change.

You will need

• a completed model from an earlier lesson

• pen, paper & dice for text generation

• grid paper for a new model

Your goal

To generate synthetic text using your model, then train a new “generation 2”

model on that synthetic output. Compare the two models to observe what

patterns are preserved or lost. Stretch goal: train a generation 3 model on

generation 2 output. Or go “full Joker”.

Key idea

Models trained on synthetic data (output from other models) can drift from the

original patterns. This demonstrates model collapse and the importance of real

training data.

© 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

L
L
M
s

U
n
p
l
u
g
g
e
d

|

C
y
b
e
r
n
e
t
i
c

S
t
u
d
i
o

Algorithm

1. generate synthetic text:

• use your existing model to generate text (as in Grid Generation)

• generate enough text for meaningful training (at least 50-100

words)

• this is your synthetic training corpus

2. train generation 2 model:

• create a new grid following the Grid Training algorithm

• use your synthetic text as the input corpus

• this new model learns from AI-generated text, not human-

written text

3. compare the models:

• look for words that appear in the original but not in generation 2

• compare the counts for cells that appear in both

• generate text from both models and compare the outputs

Example

Original training text: “See Spot run. See Spot jump.”

Generation 1 model’s synthetic output: “See run. Run spot. Spot run

run.”

Notice how the synthetic text:

• uses all the same words as the original

• has different patterns (more run run , no spot jump)

• might lose some variety from the original

Generation 2 model trained on the synthetic output will amplify

these changes:

• run run becomes more common

• spot jump disappears entirely

• new unlikely patterns may emerge

Joker mode

Instead of generating synthetic text from an existing model, create a

completely random model:

1. draw a grid with any words you choose in the rows and columns

2. add tally marks in any cells you want, with any frequencies

3. this creates a model with no connection to real text patterns

4. generate text from this random grid using dice as normal

5. train a generation 2 model on the output from your random grid

Example

A completely random Joker grid might look like this:

pizza robot moon dance

pizza 3 1 2

robot 1 4 1

moon 2 1 3

dance 2 1 2

© 2025 Ben Swift | v1.5.0 | CC BY-NC-SA 4.0

L
L
M
s

U
n
p
l
u
g
g
e
d

|

C
y
b
e
r
n
e
t
i
c

S
t
u
d
i
o

